

An open source, enterprise-grade, high-performance feature store

https://github.com/feathr-ai/feathr

built at LinkedIn & Microsoft

- a Linux Foundation AI & Data Sandbox project
- Now natively integrated with Azure/AWS, and Databricks

Agenda

2 The Solution

3 The Use Case

Summary

<u>Survey</u> in Forbes: Big data engineering for Al Re: Building training sets + Cleaning and organizing data + Collecting datasets

Time spent on data preparation

Respondents said data preparation 'least enjoyable' part of data science

Like a music streaming app ...

Music "Workflow"

- Manually get music files from various sources
- Convert them to a format my device can play
- Load onto my device (different for home/car)
- Worry about storage, bitrate, compatibility

Old Way

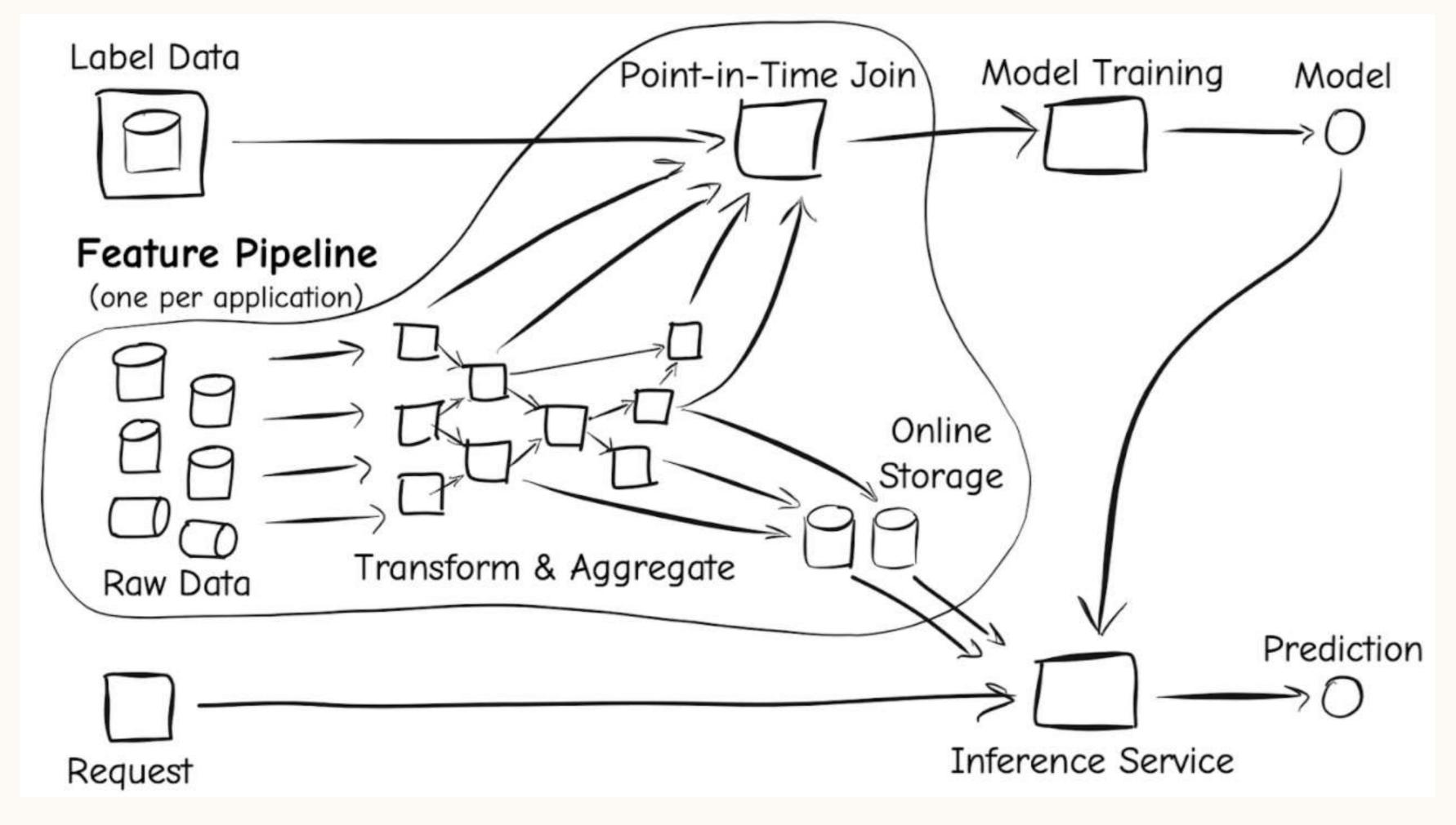
for feature engineering

ML Feature Workflow

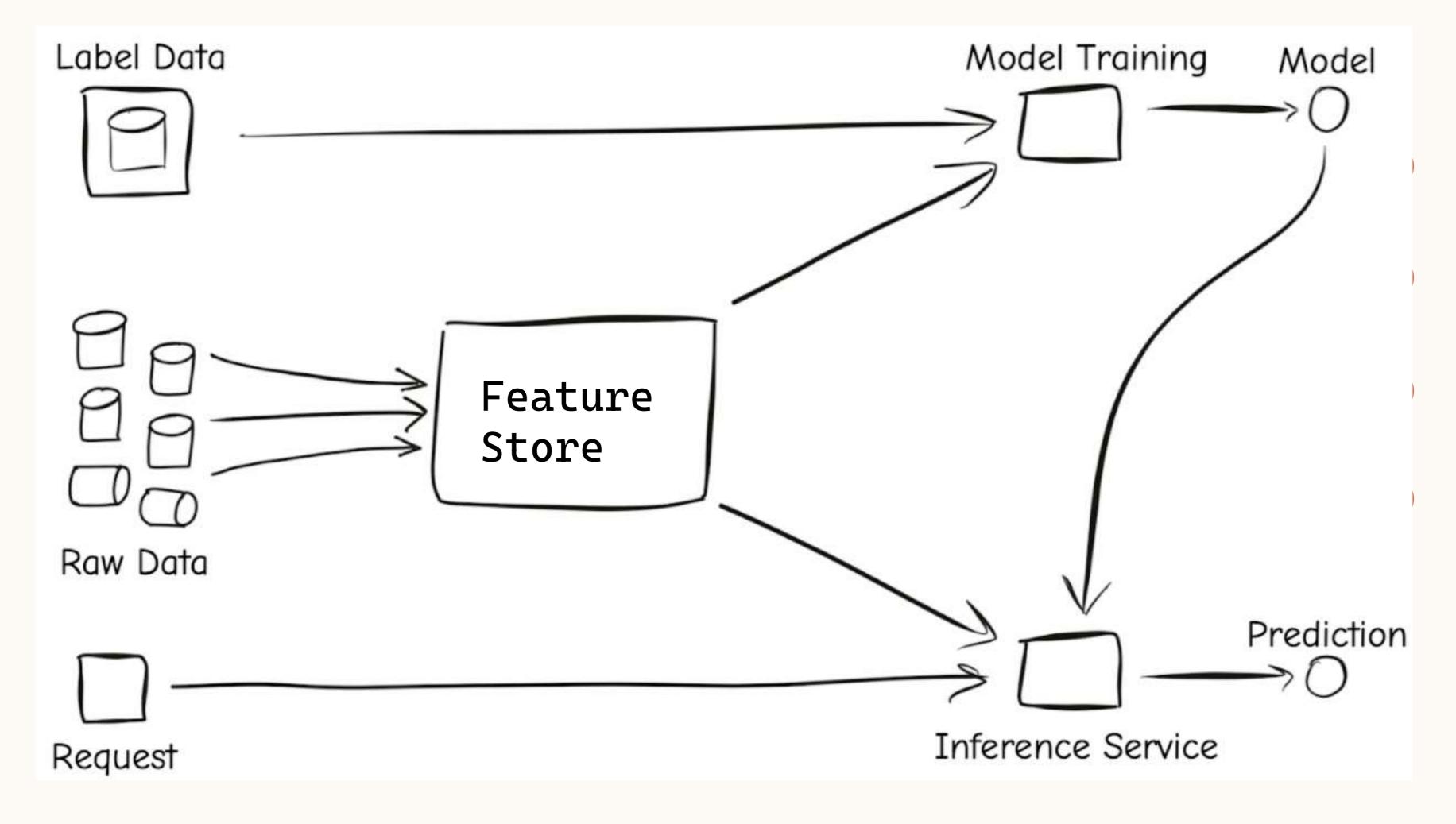
- Write jobs to get entity data from various sources
- Extract, aggregate, join, convert into proper format
- Load into model framework (different for train/serving)
- Worry about scale, perf, leakage, train/serve skew

- Just import the feature by name into model code.
- If feature doesn't exist, define and register it via simple APIs.

Why Feathr Handle all the complex weight-lifting and "boring" work automatically



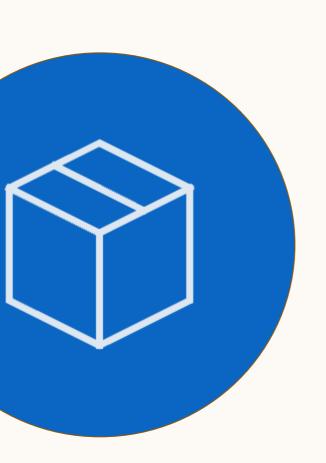
Why Feathr Handle all the complex weight-lifting and "boring" work automatically



Like a package manager for feature engineering

Code

import module1
import module2
import module3
import module4



Features

query = FeatureQuery(
 feature_list=[
 "feature_1",
 "feature_2",
 "feature_3",
 "feature_4"
],
 key=item_id)

Problem: The complexity of feature preparation pipelines

1. Load & Transform

- Different programming APIs for different environments,
 e.g. online, offline, nearline,
 etc.
- Boilerplate and repetitive work
- Hard to test and debug

2. Train/Inference Skew

- Offline training and online inference usually require different data serving
- pipelines.
- Ensuring features are generated consistently is time intensive and error prone.
- Teams are deterred from using real time data for inferencing due to the difficulty in serving the right data.

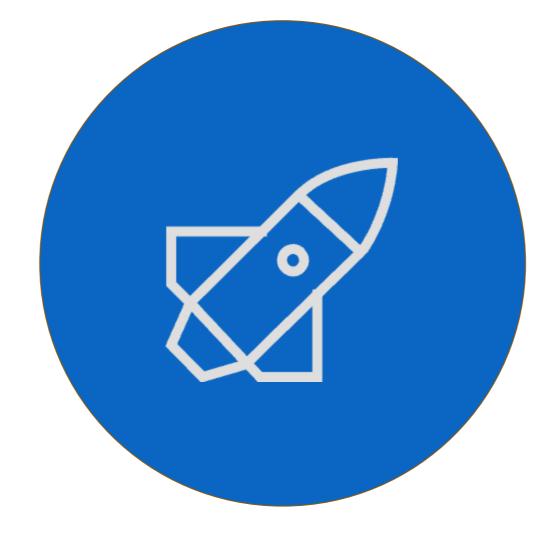
3. Re-use and share

- The cost of building and maintaining feature pipelines was borne redundantly across many teams.
- Team-specific pipelines also made it impractical to reuse features across projects. e.g.
 no common type system, no common feature namespace

What a feature store should be

Feature store principal use cases

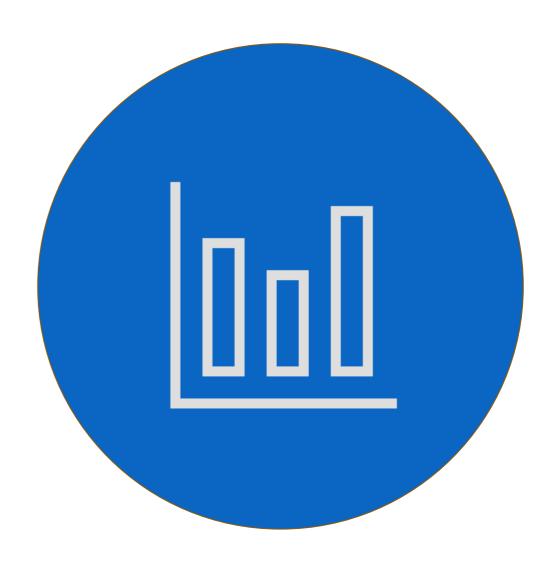




Develop Features

Based on raw data, using simple APIs

For training and online model inferencing



Deploy Features

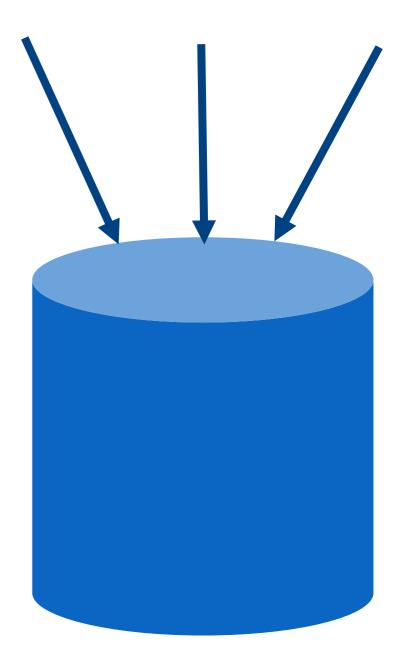
Manage Features

Monitor feature health and share across teams

The "feature store" abstraction

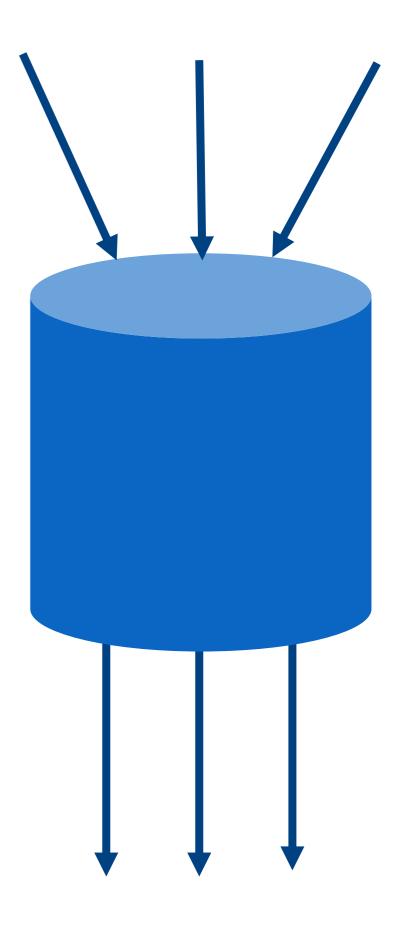
• "Put a feature in" (Producer)

- Develop a feature based on raw data sets
 - Sliding time windows
 - Aggregations
 - Transformations
 - Lookups/joins
- Develop a feature based on other feature(s)



The "feature store" abstraction

- "Put a feature in" (Producer)
 - Develop a feature based on raw data sets
 - Sliding time windows
 - Aggregations
 - Transformations
 - Lookups/joins
 - Develop a feature based on other feature(s)
- "Get some features out" (Consumer)
 - Join features to training labels
 - Backfill historical values of features (point-in-time correctness)
 - Efficiently compute, store, and serve features for online inference



Feathr at LinkedIn

Introducing Feathr, a battle tested feature store built by LinkedIn

in JOBS	MANAGE JOBS	POSTAJOB		Search for something or so
San Francisco Bay Daily budget: \$15.	I Engineers Ac Area • Opened 28d ago 00 • Total spend: \$30.00 peline (0)	ive		Editjo
Recommended	matches 13 Applica	+ Add candidates		
		Mae Norris in - 3rd Sk	ip Not intereste	d 1-click message
		User Experience Designer at LinkedIn Freshing • California Institute of Technology Greater Chicago Area • 345 路		Preview message
		Summary		
		*Named deputy partner manager and systems engineer for the Lunar CA	TALYST program. Define	d systems View more
		Following your companye page since Jun 16, 2015 5 connections ~		
		Experience		
		Orealing Jan 2014 - Present • 1 yr 8 mos Greater Chicago Area		

someone	Q 1	ā 🚯
job & budget	Close jo	b ····
	Reports	Settings

	Sketch 😤	9:41 AM	100%
۸	Q. Search for people, jobs, posts and m		0
	Feed	Featured	
Shar	e an article, pl	hoto or idea	ß

	Principal Data Scientist Microsoft - Bangalore, IN Posted 3 days ago - 1,142 views		
	Save	Apply	
ob	Compa	iny	

Congrats Lior Ron on the acquisition! Drinks are on you next time we meet.

Artificial intelligence is more artificial than

Comment

Artificial Intelligence

Googl

A Share

intelligent

11 wired.com

C Like

1.2k Likes · 117 Comments

ead of Content, Search & Discovery Products

Tomer Cohen

147 applicants

· Full-time

Jo

32 connections can refer you Get referred to increase your chances of As landing an interview.

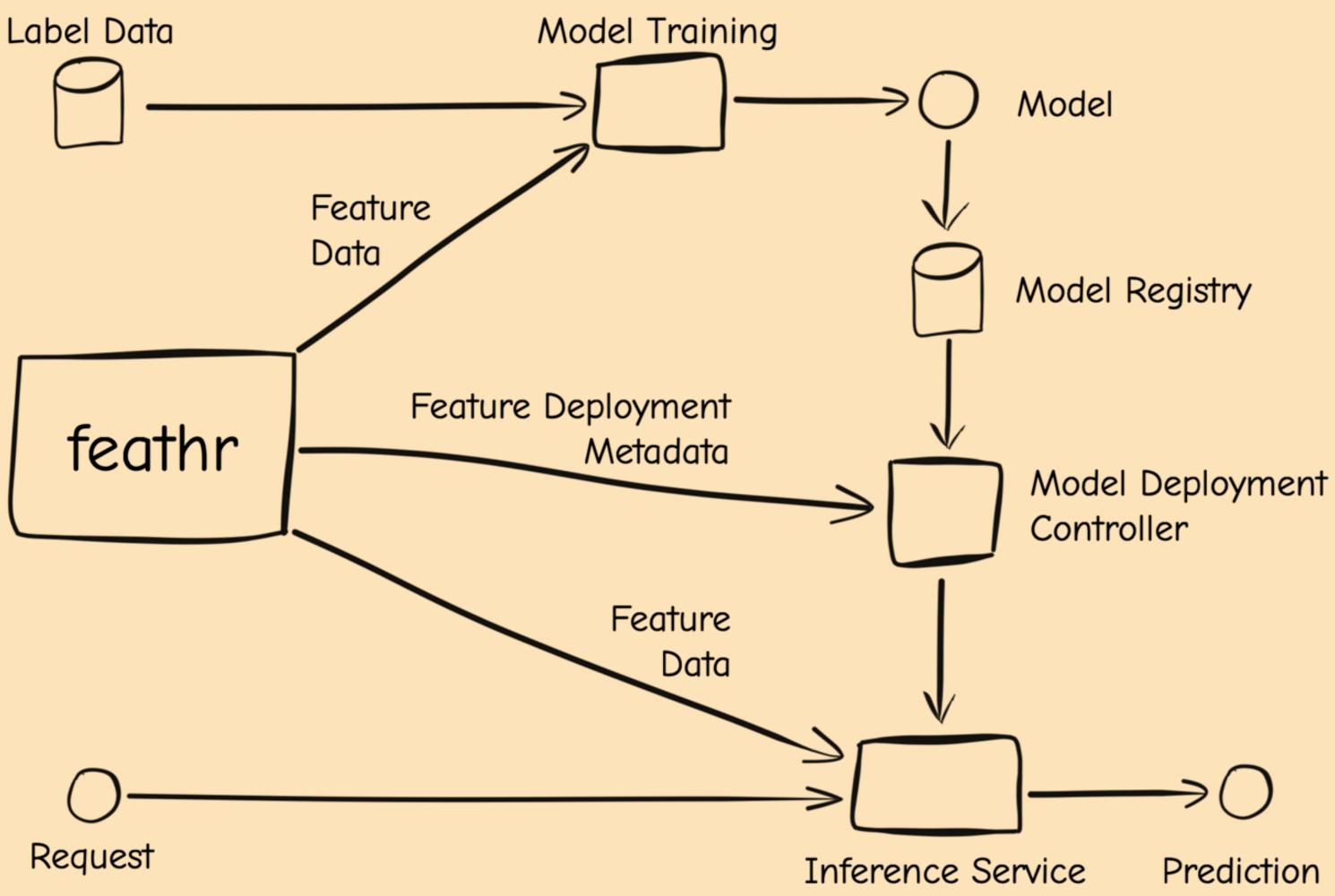
· 10001 employees

· Computer Software

Job description

We are currently building the next generation of cloud services for partner monetization, user acquisition, engagement & membership platform. These services have a huge global footprint of over 240 markets and process millions of transactions daily, with loads growing linearly as Microsoft moves to a "cloud first", "mobile first" strategy. The platform powers all of Microsoft's key services - Windows App Store, Windows Phone, XBOX, Bing Ads, Office 365, Microsoft Azure to name just a few. This endeavor offers big opportunities for data science Home My Network Messaging Notifications Jobs and machine learning

Learning Hiring Preferences: The AI Behind LinkedIn Jobs Personalized Recommendations in LinkedIn Learning Helping members connect to opportunity through AI <u>Near real-time features for near real-time personalization</u>



Feathr is a pillar of LinkedIn's ML platform

Model deployment service uses Feathr to ensure a model's feature dependencies are deployed, before deploying the model.

Feathr at LinkedIn

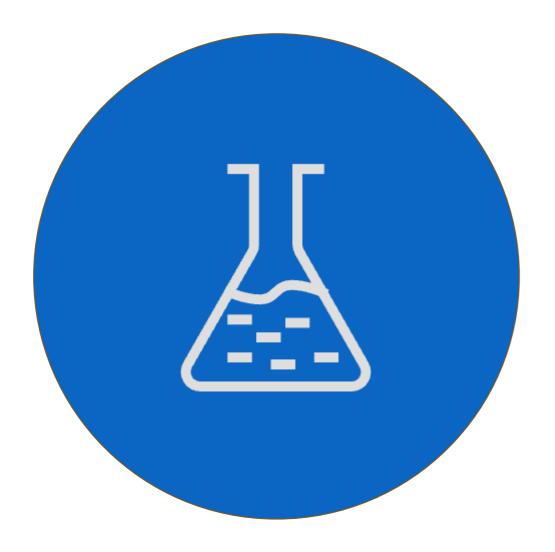
- hundreds of models
- thousands of features
- many kinds of entities (economic graph)
- petabyte scale

Timeline

- 2017 Initial development and launch
- 2018 Broad adoption within LinkedIn
- 2020 Majority of LinkedIn ML applications onboarded
- 2022 Open source, Azure Integration, joined Linux Foundation AI & Data

Impact at LinkedIn

Majority of ML applications at LinkedIn have adopted Feathr



Faster experimentation with new features, from weeks to days

Improved Performance

Running time improved over custom pipelines, as much as 50%

Improved Collaboration

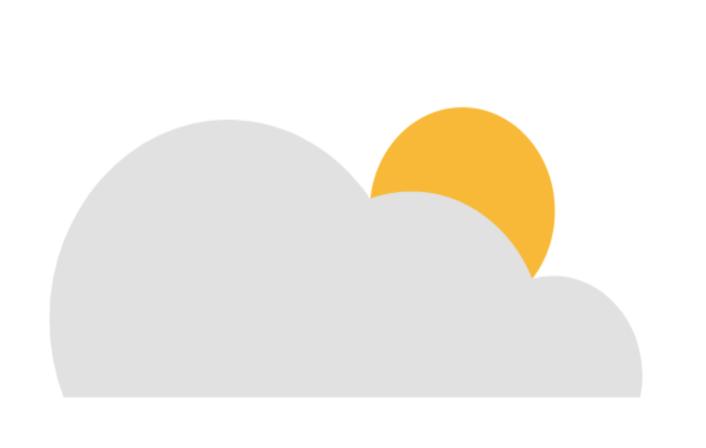
Applications can share features, which was difficult previously

What is Feathr

An abstraction layer between raw data and model

• **Define** features based on raw data sources using simple APIs.

- **Get** those features by their names during model training and model inferencing.
- Share features across your team and organizations.



Highlights

Cloud-native

Native integration with Azure and AWS

Rich Transformation

Python built-in transformations and PySpark UDF, on-demand evaluation

Scalable & High Performance

Highly optimized feature compute engine

Use case: Create Feature Definition

Load raw source data, and define transformation

```
batch_source = HdfsSource(
   name="nycTaxiBatchSource",
   path="abfss://green_tripdata_2020-04.csv",
   event_timestamp_column="lpep_dropoff_datetime",
   timestamp_format="yyyy-MM-dd HH:mm:ss")
trip_id = TypedKey(key_column="trip_id",
                    key_column_type=ValueType.INT64,
                    description="trip id")
features = [
   Feature(name="f_trip_distance",
           feature_type=FLOAT,
           key=trip_id),
   Feature(name="f_is_long_trip_distance",
           feature_type=BOOLEAN,
           transform="cast_float(trip_distance)>30",
                             # SQL-like syntax to transform raw data into feature
           key=trip_id)
```

```
anchor = FeatureAnchor(name="anchor_features",
                       source=batch_source,
                       features=features)
```

- # Source name to enrich your metadata
- # Path to your data
- # Event timestamp for point-in-time correctness
- # Supports various fromats inculding epoch

Ingest feature data as-is

Features anchored on same source

Use Case - Streaming Feature

Create features from streaming source stream_source = KafKaSource(name="kafkaStreamingSource",

> driver_id = TypedKey(key_column="driver_id", key_column_type=ValueType.INT64, description="driver id", full_name="nyc driver id")

kafkaAnchor = FeatureAnchor(name="kafkaAnchor", source=stream_source,

```
kafkaConfig=KafkaConfig(brokers=["feathrazureci.servicebus.windows.net:
                        topics=["feathrcieventhub"],
                        schema=schema)
features=[Feature(name="f_modified_streaming_count",
                  feature_type=INT32,
                  transform="trips_today + 1",
                  key=driver_id),
          Feature(name="f_modified_streaming_count2",
                  feature_type=INT32,
                  transform="trips_today + 2",
                  key=driver_id)]
```

Use case: Build training dataset

Point-in-time Join Correct Semantics

```
# Requested features to be joined
# Define the key for your feature
location_id = TypedKey(key_column="DOLocationID",
                       key_column_type=ValueType.INT32,
                       description="location id in NYC",
                       full_name="nyc_taxi.location_id")
feature_query = FeatureQuery(feature_list=["f_location_avg_fare"], key=[location_id])
```

```
# Observation dataset settings
settings = ObservationSettings(
  observation_path="abfss://green_tripdata_2020-04.csv",
  event_timestamp_column="lpep_dropoff_datetime",
  timestamp_format="yyyy-MM-dd HH:mm:ss")
```

Prepare training data by joining features to the input (observation) data. # feature-join.conf and features.conf are detected and used automatically. feathr_client.get_offline_features(observation_settings=settings,

Path to your observation data # Event timepstamp field for your data, # Event timestamp format, optional

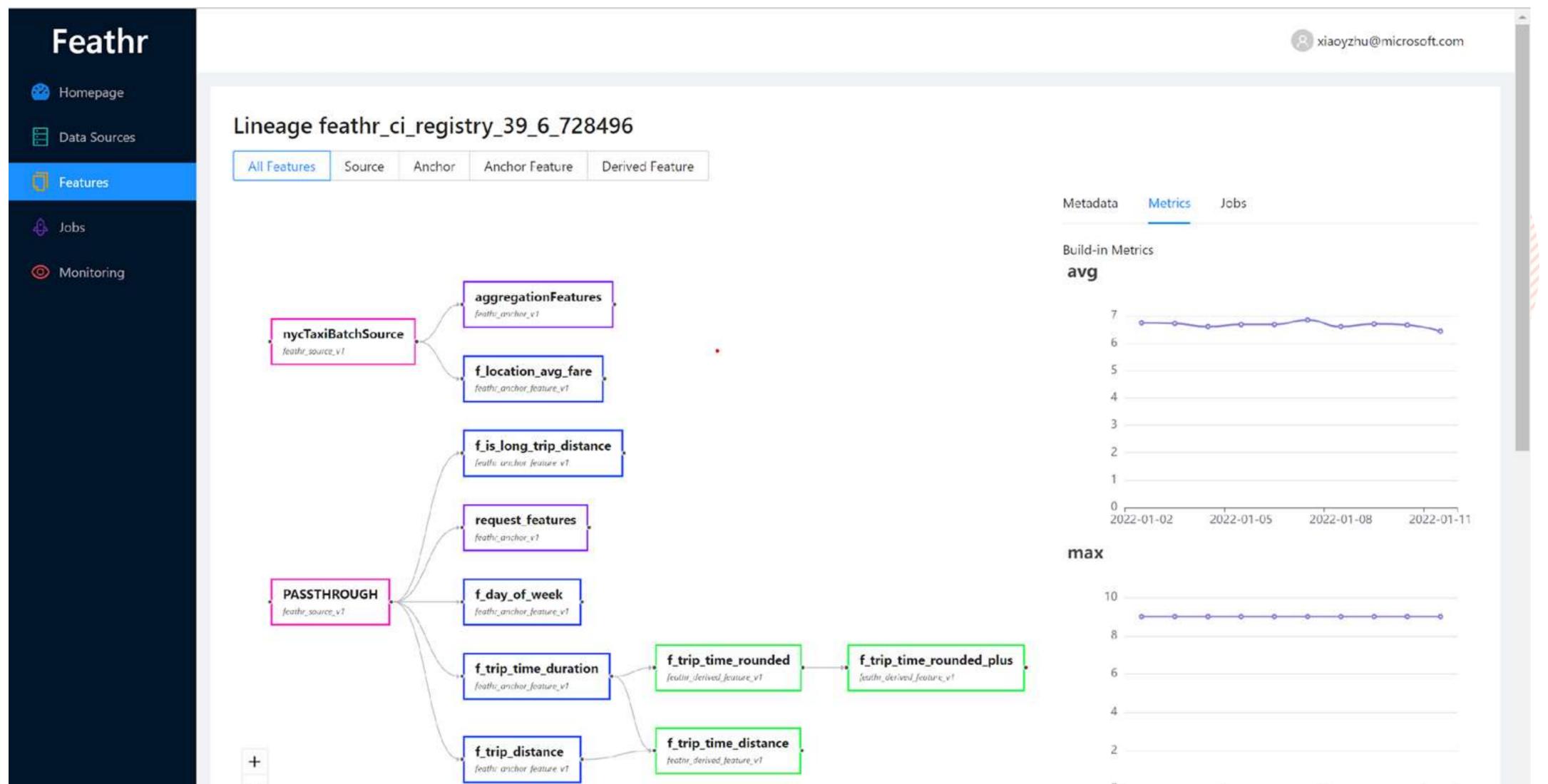
```
output_path="abfss://output.avro",
feature_query=feature_query)
```

Use Case - Feature Materialization Materialize feature values to online storage for realtime access

client = FeathrClient() redisSink = RedisSink(table_name="nycTaxiDemoFeature") # Materialize two features into a redis table. settings = MaterializationSettings("nycTaxiMaterializationJob", sinks=[redisSink], feature_names=["f_location_avg_fare", "f_location_max_fare"]) client.materialize_features(settings)

Use Case - Feature Sharing and Discovery

Share features and discover features



Use Case - Derived Feature

Define features on top of other features

Compute a new feature(a.k.a. derived feature) on top of an existing feature derived_feature = DerivedFeature(name="f_trip_time_distance", feature_type=FLOAT, key=trip_key,

Another example to compute embedding similarity user_embedding = Feature(name="user_embedding", feature_type=DENSE_VECTOR, key=user_key) item_embedding = Feature(name="item_embedding", feature_type=DENSE_VECTOR, key=item_key)

user_item_similarity = DerivedFeature(name="user_item_similarity",

```
input_features=[f_trip_distance, f_trip_time_duration],
transform="f_trip_distance * f_trip_time_duration")
```

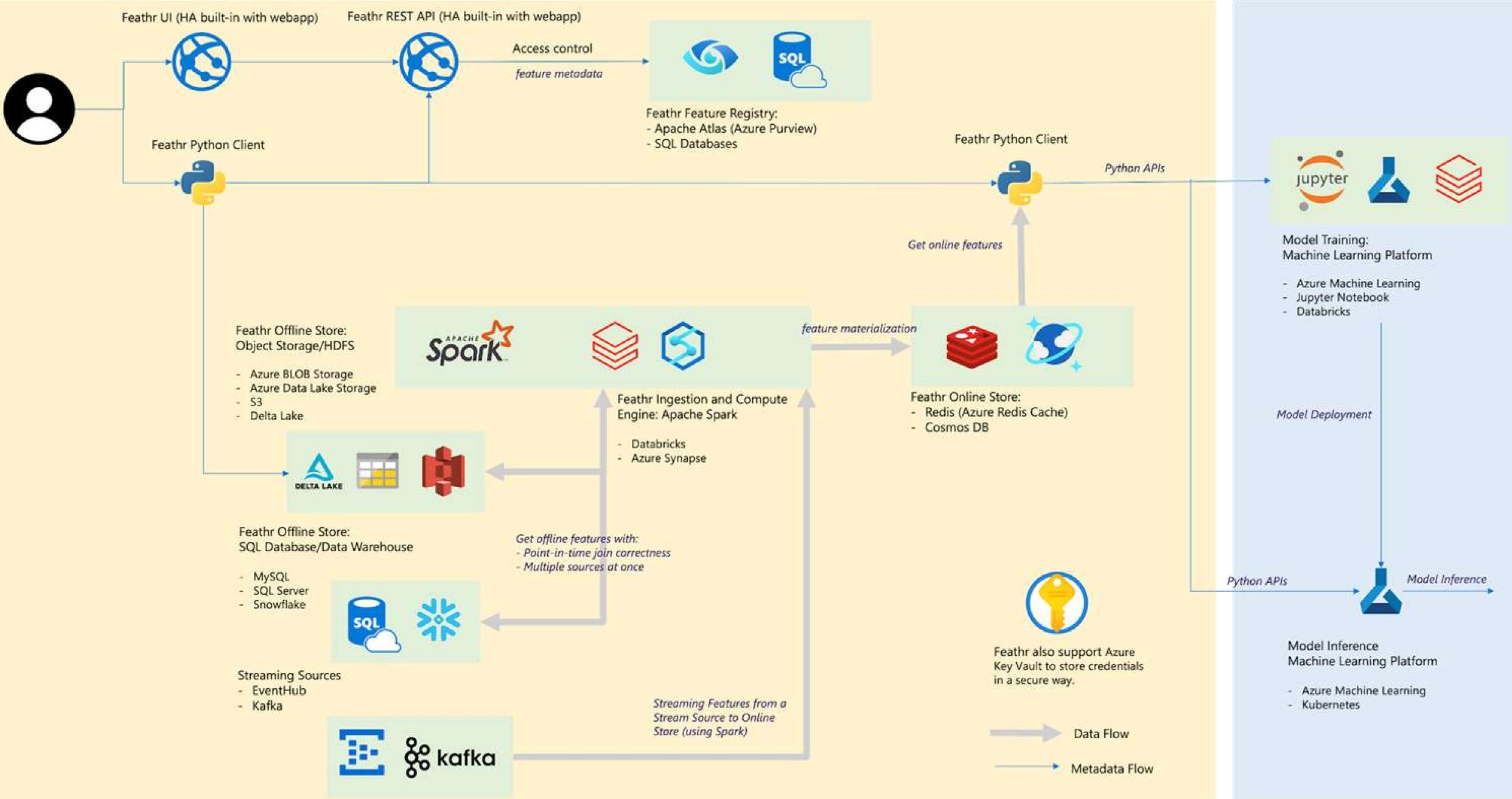
```
feature_type=FLOAT,
key=[user_key, item_key],
input_features=[user_embedding, item_embedding],
transform="cosine_similarity(user_embedding, item_embedding)"
```

Feathr Highlights – Scalability

- Capable of processing tens of billions of rows and PB scale data
- Native optimizations like bloom filters, join plan optimizer, salted join
- Incremental joins for large dataset

rows and PB scale data in plan optimizer, salted join

Feathr Architecture



Demo and Q&A

More Resources

Source code – welcome to start & fork! https://github.com/feathr-ai/feathr

Tutorials: Introduction to Feathr - Beginner's guide Notebook tutorial: Build a Product Recommendation Machine Learning Model with Feathr Feature Store

Slack invitation: https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6vvoq0Us7bbKAw873cEzHOSq

Summary

- Feathr is an open-source feature store which can be seen as an abstraction layer between raw data and model.
- Feathr allows users to define features with transformation on top of raw data source and get feature values by feature name during both training and inferencing.
- **Feathr** simplifies feature preparation workflows and enables feature sharing across teams and company.

Thank you (Check out our GitHub: <u>https://github.com/feathr-ai/feathr</u>)