& teathr " Nicrosoft

 a Linux Foundation Al &

An open source, enterprise-grade, Data Sandbox project
high-performance feature store

* Now natively integrated
https://github.com/feathr-ai/feathr with Azure/AWS, and

Databricks




1 The Problem

2 The Solution
Agenda

3 The Use Case

4 Summary



Survey In Forbes: Big data engineering for Al

Re: Building training sets + Cleaning and organizing data + Collecting datasets

887

Time spent on data Respondents said
preparation data preparation ‘least
enjoyable’ part of data
science


https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=4db1f9456f63

Like a music streaming app ...

Old
Way

New
Way

Music “Workflow”

Manually get music files from
various sources

Convert them to a format my
device can play

Load onto my device
(different for home/car)

Worry about storage, bitrate,
compatibility

+

Just ask virtual assistant to
play the song.

for feature engineering

ML Feature Workflow

Write jobs to get entity data
from various sources

Extract, aggregate, join, convert
into proper format

Load into model framework
(different for train/serving)

Worry about scale, perf, leakage,
train/serve skew

+

Just import the feature by
name into model code.

If feature doesn’t exist, define
and register 1t via simple APIs.



Why Feathr

Handle all the complex weight-lifting and “boring” work automatically

Label Data

= -
Feature Pipeline /
(one per application

Point-in-Time Join Model Training Model

49,

A Prediction
[ ]—0

Request Inference Service




Why Feathr

Handle all the complex weight-lifting and “boring” work automatically

Label Data Model Training Model

@ 40

ﬁ E’) > Feature

>| Store

/
Raw Data \

Prediction
) [ 1 —0

Request Inference Service




Like a package manager for feature engineering

import module1 query = FeatureQuery(
import module2 feature_list=

import module3 ‘teature_T",
import module4 ‘eature_2",
"feature 3",
"feature 4"

],
key=1tem_id)




Problem: The complexity of feature preparation pipelines

1. Load & Transform 2. Train/Inference Skew 3. Re-use and share

e The cost of building and
maintaining feature pipelines

e Different programming APIs e Offline training and online

for different environments, inference usually require

e.g. online, offline, nearline,

etc.

e Boilerplate and repetitive

work
e Hard to test and debug

different data serving
pipelines.

Ensuring features are
generated consistently is
time intensive and error
prone.

Teams are deterred from
using real time data for
inferencing due to the
difficulty in serving the right
data.

was borne redundantly
across many teams.
Team-specific pipelines also
made it impractical to reuse
features across projects. e.q.
NoO common type system, no
common feature namespace



What a feature store
should be



Feature store principal use cases

Develop Features Deploy Features Manage Features

Based on raw data, For training and online Monitor feature health
using simple APlIs model inferencing and share across teams



The “feature store” abstraction

e "'Put a feature in” (Producer)

o Develop a feature based on raw data sets
m Sliding time windows
m Aggregations
m Transformations
m Lookups/joins

o Develop a feature based on other feature(s)




The “feature store” abstraction

e "'Put a feature in” (Producer)

o Develop a feature based on raw data sets
m Sliding time windows
m Aggregations
m Transformations
m Lookups/joins

o Develop a feature based on other feature(s)

¢ 'Get some features out” (Consumer)
o Join features to training labels

o Backfill historical values of features
(point-in-time correctness)

o Efficiently compute, store, and serve features for online inference




Feathr at LinkedIn



Introducing Feathr, a battle tested feature store built by
LinkedlIn

Principal Data Scientist
Microsoft - Bangalore, IN

m £ MAMNAGE JIDEBS POST A JOE Search for scomething or smeone

Posted 3 days ago - 1,142 views

Y . o conpany comn
s 147 applicants « T0OUT employess __u

Congrats Lior Ron on the acquisition! Dnnks are on : ; .
: + Full-time « Computer Software m i

Mae MNorris [[T] -2 Skip Mot interested you next time we meet

User Experience Designer at LinkedIn

Mechanical Engineers = Acve Edit job & budget || Closejob |

art Franciaco Bay Area = Doenod 28

Candidates Fipelineg (0} Reporis Settings

Recommended matches 13 Applicants + Add candidates

& Proviow movsage

Fresshing » Califomia institute of Techmology

Greater Chicago Area » 345 S8 e 32 connections can refer you
Get referred to increase your chances of AS
landing an interview.

Summary

"Mamed deputy pariner manager and systems engineer for the Lunar CATALYST program. Defined systems... View more

o Open (o new opportunities -

11 Following your compange page since Jun 16, 2015 Job description

@ 5 connections - Artificial intelligence is more artificial than We are currently building the next generation of cloud services
intelligent for partner monetization, user acquisition, engagement &
membership platform. These services have a huge global
. f] wired.com Artificial Intelligence (ot footprint of over 240 markets and process millions of
Experience transactions daily, with loads growing linearly as Microsoft moves
Accoutit Managee : —— to a “cloud first®, "mobile first” strategy. The platform powers all
Freshing ) of Microsoft’s key services - Windows App Store, Windows
Jan 2014 - Present & 1yr 8 mo Q Like E1 comment Fv Share Phone, XBOX, Bing Ads, Office 365, Microsoft Azure to name just
Careater Chicaps Adma i~ = Pt r . }
. .n. &5_, [_S A Ll a few. This endeavor offers big opportunities for data science

and machine learning .

_earning Hiring Preferences: The Al Behind LinkedIn Jobs
Personalized Recommendations in Linkedln Learning
Helping members connect to opportunity through Al
Near real-time features for near real-time personalization



https://engineering.linkedin.com/blog/2019/02/learning-hiring-preferences--the-ai-behind-linkedin-jobs
https://engineering.linkedin.com/blog/2016/12/personalized-recommendations-in-linkedin-learning
https://engineering.linkedin.com/blog/2021/helping-members-connect-to-opportunity-through-ai
https://engineering.linkedin.com/blog/2022/near-real-time-features-for-near-real-time-personalization

Label Data Model Training

B D—% O Model
Feature J/

Data

Model Registry

Feature Deployment

feC]'l'hI" W D Model Deployment
C

ontroller

Feature
Data

[ )—

Request Inference Service Prediction

Feathr is a pillar of
LinkedIn’s ML
platform

Mog

el deployment service uses

-eat

nr to ensure a model’s feature

dependencies are deployed,

before deploying the model.



Feathr at LinkedIn

Timeline
- hundreds of models
‘h d< of feat 2017 Initial development and launch
) ousar.w > OT e L.“ies 2018 Broad adoption within LinkedIn
- many ledS of entities 2020  Majority of LinkedIn ML applications
(economic graph) onboarded
2022 Open source, Azure Integration, joined

- petabyte scale Linux Foundation Al & Data



Impact at LinkedIn
Majority of ML applications at LinkedIn have adopted Feathr

/= @

Improved Productivity Improved Performance Improved Collaboration
Faster experimentation Running time improved Applications can share
with new features, from over custom pipelines, as features, which was

weeks to days much as 50% difficult previously



What Is Feathr

An abstraction layer between raw
data and model

Define features based
on raw data sources
using simple APIs.

Get those features by
their names during
model training and
model inferencing.

Share features across
your team and
organizations.



Highlights

Cloud-native

Native integration with
Azure and AWS

=
.
"li:.-'. - ,
- . -
l‘ '
N -,
[ I .|
: 1 ] @ i
Y ™
LY ...
| c

Rich Transformation

Python built-in

transformations and
PySpark UDF, on-demand
evaluation

Scalable & High
Performance
Highly optimized feature
compute engine



Use case: Create Feature Definition

Load raw source data, and define transformation

batch_source = HdfsSource(
name="nycTaxiBatchSource",
path="abfss://green_tripdata_2020-04.csv",
event_timestamp_column="1pep_dropoff_datetime",
timestamp_format="yyyy-MM-dd HH:mm:ss")

trip_id = TypedKey(key_column="trip_id",
key_column_type=ValueType.INT64,
description="trip id")

features = [

Feature(name="f_trip_distance",
feature_type=FLOAT,
key=trip_id),

Feature(name="f_is_long_trip_distance",
feature_type=BOOLEAN,
transform="cast_float(trip_distance)>30",
key=trip id) # SOL-like syntax to tr

anchor = FeatureAnchor(name="anchor_features",

source=batch_source,
features=features)




Use Case - Streaming Feature

Create features from streaming source

stream_source = KafKaSource(name="kafkaStreamingSource",
kafkaConfig=KafkaConfig(brokers=["feathrazureci.servicebus.windows.net:
topics=["feathrcieventhub"],
schema=schema)

driver_id = TypedKey(key_ column="driver_id",
key_column_type=ValueType.INT64,
description="driver id",
full_name="nyc driver id")

kafkaAnchor = FeatureAnchor(name="kafkaAnchor",

source=stream _source,

features=[Feature(name="f_modified_streaming_count",
feature_type=INT32,
transform="trips_today + 1",
key=driver_id),

Feature(name="f_modified_streaming_count2"

feature_type=INT32,
transform="trips_today + 2",
key=driver_id)]




Use case: Build training dataset

Point-in-time Join Correct Semantics

# Requested features to be joined

# Define the key for your feature

location_id = TypedKey(key_column="DOLocationID",
key column_type=ValueType.INT32,
description="1location id in NYC",
full_name="nyc_taxi.location_id")

feature_query = FeatureQuery(feature_list=["f_location_avg_fare"], key=[location_id])

# Observation dataset settings

settings = ObservationSettings(
observation_path="abfss://green_tripdata_2020-04.csv", # Path to your observation data
event_timestamp_column="Llpep_dropoff_datetime", # Event timepstamp field for your data,
timestamp_format="yyyy-MM-dd HH:mm:ss") # Event timestamp format, optional

# Prepare training data by joining features to the input (observation) data.

# feature-join.conf and features.conf are detected and used automatically.

feathr_client.get_offline_features(observation_settings=settings,
output_path="abfss://output.avro",
feature_query=feature_query)




Use Case - Feature Materialization

Materialize feature values to online storage for realtime access

client = FeathrClient()

redisSink = RedisSink(table_name="nycTaxiDemoFeature")

# Materialize two features 1into a redilis table.

settings = MaterializationSettings('"nycTaxiMaterializationJob",

sinks=[redisSink],
feature_names=["f_location_avg_fare", "f_location_max_fare"])
client.materialize_features(settings)




Use Case - Feature Sharing and Discovery

Share features and discover features

xiaoyzhu@microsoft.com

Lineage feathr_ci_registry_39_6_728496

Ml Features Source Anchor Anchor Feature Derived Feature
Matadata hMetrics Jobs
Build-in Metrics
Monitornng a\fg
J aggregationFeatures i
: | ey o
| nycTaxiBatchSource |
| f_location_avg_fare |
| f.is_long_trip_distance |
0, :
| request features | 2022-01-02 2022-01-05 2022-01-08 2022-01-1
MaXx
| PASSTHROUGH | | f_day_of week |

| f.uip_time_duration | ! f_trlrfu_.tlrne_rnuf'uded ! _ .I‘_trlp_tn.rne_r.-:-unded_plm !

oo f trip time distance
| f_trip_distance | W F_l‘_ lensr i p




Use Case - Derived Feature

Define features on top of other features

# Compute a new feature(a.k.a. derived feature) on top of an existing feature
derived_feature = DerivedFeature(name="f_trip_time_distance",
feature_type=FLOAT,
key=trip_key,
input_features=[f_trip_distance, f_trip_time_duration],
transform="f_trip_distance % f_trip_time_duration")

# Another example to compute embedding similarity

user_embedding = Feature(name="user_embedding", feature_type=DENSE_VECTOR, key=user_key)
item_embedding = Feature(name="item_embedding", feature_type=DENSE_VECTOR, key=item_key)

user_item_similarity = DerivedFeature(name="user_item_similarity",
feature_type=FLOAT,
key=[user_key, item_key],
input_features=[user_embedding, item_embedding],
transform="cosine_similarity(user_embedding, item_embedding)'




Feathr Highlights — Scalability

» (Capable of processing tens of billions of rows and PB scale data
* Native optimizations like bloom filters, join plan optimizer, salted join
* |Incremental joins for large dataset



Feathr Architecture



Feathr Ul (HA built-in with webapp) Feathr REST APl (HA built-in with webapp)

Access control (
[ 1Y h-"

feature metadata

C)

Feathr Feature Registry:
- Apache Atlas (Azure Purview)

Feathr Python Client - SQL Databases Feathr Python Client o
L] A
Python APIs
e : . — = . - » Jupyter
i
L
Get online features M-::-deﬂ Trainingl:
Machine Learning Platform
- Azure Machine Learning
- Jupyter Notebook
- Databricks
Feathr Offline Store: Ao ut’i' feature materialization '
Object Storage/HDFS Sp or -
| . -*""J >
- Azure BLOB Storage
- Azure Data Lake 5torage :
. 53 . Feathr Ingestion and Compute Feathr Online Store:
- Delta Lake Engine: Apache Spark - Redis {Azure Redis Cache) Model Deployment
- Cosmos DB
- Databricks
—— - Azure Synapse
J !5 ”
DELTA LAKE =
Feathr Offline Store: ; :
Get offline features with:
SQL Database/Data Warehouse | Fa:::T-in time jaln correctness
- Multiple sources at once
- MysaL Python APis Madel Inference
- SOL Server . L . -
- Snowflake =~ L
A
Q Feathr also support Azure Model Inference
’ Key Vault to store credentials Machine Learning Platform
Streaming Sources in a secure way.
- EventHub - Azure Machine Learning
- Kafka Streaming Features from a - Kubernetes
Streamn Source to Online
= Store (using Spark) Data Flow

=-I
L % kﬂfkﬂ *  Metadata Flow



Demo and Q&A



More Resources

Source code — welcome to start & fork!
https://github.com/feathr-ai/feathr

Tutorials:

Introduction to Feathr - Beginner's guide

Notebook tutorial: Build a Product Recommendation Machine Learning
Model with Feathr Feature Store

Slack invitation:
https://|join.slack.com/t/feathrai/shared invite/zt-1ffva5ubv-
vogOUs7bbKAw873cEzHOSg



https://github.com/feathr-ai/feathr
https://www.youtube.com/watch?v=gZg01UKQMTY
https://www.youtube.com/watch?v=2KSM-NLfvY0
https://www.youtube.com/watch?v=2KSM-NLfvY0
https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg
https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg

* Feathr is an open-source
feature store which can be
seen as an abstraction layer
between raw data and
model.

* Feathr allows users to
define features with
Summa ry transformation on top of
raw data source and get
feature values by feature
name during both training
and inferencing.

* Feathr simplifies feature
preparation workflows and
enables feature sharing
across teams and company.



Thank you

(Check out our GitHub: https://github.com/feathr-ai/feathr)




	Slide 1
	Slide 2: Agenda
	Slide 3: Survey in Forbes: Big data engineering for AI
	Slide 4: Like a music streaming app …
	Slide 5: Why Feathr
	Slide 6: Why Feathr
	Slide 7: Like a package manager for feature engineering
	Slide 8: Problem: The complexity of feature preparation pipelines
	Slide 9: What a feature store should be
	Slide 10: Feature store principal use cases
	Slide 11: The “feature store” abstraction
	Slide 12: The “feature store” abstraction
	Slide 13: Feathr at LinkedIn
	Slide 14: Introducing Feathr, a battle tested feature store built by LinkedIn
	Slide 15: Feathr is a pillar of LinkedIn’s ML platform 
	Slide 16: Feathr at LinkedIn
	Slide 17: Impact at LinkedIn
	Slide 18: What is Feathr
	Slide 19: Highlights
	Slide 20: Use case: Create Feature Definition
	Slide 21: Use Case - Streaming Feature 
	Slide 22: Use case: Build training dataset
	Slide 23: Use Case - Feature Materialization
	Slide 24: Use Case - Feature Sharing and Discovery
	Slide 25: Use Case - Derived Feature
	Slide 26: Feathr Highlights – Scalability
	Slide 27: Feathr Architecture
	Slide 28
	Slide 29: Demo and Q&A
	Slide 30: More Resources
	Slide 31: Summary
	Slide 32: Thank you (Check out our GitHub: https://github.com/feathr-ai/feathr)

