
An open source, enterprise-grade, 
high-performance feature store

https://github.com/feathr-ai/feathr

• built at LinkedIn & 
Microsoft

• a Linux Foundation AI & 
Data Sandbox project

• Now natively integrated 
with Azure/AWS, and 
Databricks



1

2

3

4

Agenda

The Problem

The Solution

The Use Case

Summary



Survey in Forbes: Big data engineering for AI
Re: Building training sets + Cleaning and organizing data + Collecting datasets

Time spent on data 
preparation

Respondents said data 
preparation 'least 

enjoyable' part of data 
science

Data scientists gave 
their job the highest 

mark possible

82% 88% 35%

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=4db1f9456f63


Like a music streaming app …

- Manually get music files from 

various sources

- Convert them to a format my 

device can play

- Load onto my device 

(different for home/car)

- Worry about storage, bitrate, 

compatibility

- Just ask virtual assistant to 

play the song.

- Write jobs to get entity data 

from various sources

- Extract, aggregate, join, convert 

into proper format 

- Load into model framework 

(different for train/serving)

- Worry about scale, perf, leakage, 

train/serve skew

- Just import the feature by 

name into model code.

- If feature doesn’t exist, define 

and register it via simple APIs.

Music “Workflow” ML Feature Workflow

Old

Way

New

Way

for feature engineering



1

2

3

4

5

6

7

8

Why Feathr
Handle all the complex weight-lifting and “boring” work automatically



1

2

3

4

5

6

7

8

Why Feathr
Handle all the complex weight-lifting and “boring” work automatically

Feature 
Store



Code

import module1

import module2

import module3

import module4

Like a package manager for feature engineering

Features

query = FeatureQuery(

feature_list=[

"feature_1",

"feature_2",

"feature_3",

"feature_4"

],

key=item_id)



Problem: The complexity of feature preparation pipelines

1. Load & Transform

● Different programming APIs 

for different environments, 

e.g. online, offline, nearline, 

etc.

● Boilerplate and repetitive 

work 

● Hard to test and debug

2. Train/Inference Skew

● Offline training and online 

inference usually require 

different data serving 

pipelines.

● Ensuring features are 

generated consistently is 

time intensive and error 

prone.​

● Teams are deterred from 

using real time data for 

inferencing due to the 

difficulty in serving the right 

data.

3. Re-use and share

● The cost of building and 

maintaining feature pipelines 

was borne redundantly 

across many teams.

● Team-specific pipelines also 

made it impractical to reuse 

features across projects. e.g.

no common type system, no 

common feature namespace



What a feature store 
should be



Feature store principal use cases

Develop Features

Based on raw data,
using simple APIs 

Deploy Features

For training and online 
model inferencing

Manage Features

Monitor feature health 
and share across teams



The “feature store” abstraction

●“Put a feature in” (Producer)

○ Develop a feature based on raw data sets

■ Sliding time windows

■ Aggregations

■ Transformations

■ Lookups/joins

○ Develop a feature based on other feature(s)



The “feature store” abstraction

●“Put a feature in” (Producer)

○ Develop a feature based on raw data sets

■ Sliding time windows

■ Aggregations

■ Transformations

■ Lookups/joins

○ Develop a feature based on other feature(s)

●“Get some features out” (Consumer)

○ Join features to training labels

○ Backfill historical values of features

(point-in-time correctness)

○ Efficiently compute, store, and serve features for online inference



Feathr at LinkedIn



Introducing Feathr, a battle tested feature store built by 
LinkedIn

Learning Hiring Preferences: The AI Behind LinkedIn Jobs

Personalized Recommendations in LinkedIn Learning

Helping members connect to opportunity through AI

Near real-time features for near real-time personalization

https://engineering.linkedin.com/blog/2019/02/learning-hiring-preferences--the-ai-behind-linkedin-jobs
https://engineering.linkedin.com/blog/2016/12/personalized-recommendations-in-linkedin-learning
https://engineering.linkedin.com/blog/2021/helping-members-connect-to-opportunity-through-ai
https://engineering.linkedin.com/blog/2022/near-real-time-features-for-near-real-time-personalization


Feathr is a pillar of 
LinkedIn’s ML 
platform 

Model deployment service uses 

Feathr to ensure a model’s feature 

dependencies are deployed, 

before deploying the model.



Feathr at LinkedIn

- hundreds of models

- thousands of features

- many kinds of entities 
(economic graph)

- petabyte scale

Timeline

2017 Initial development and launch

2018 Broad adoption within LinkedIn 

2020 Majority of LinkedIn ML applications 
onboarded

2022 Open source, Azure Integration, joined 
Linux Foundation AI & Data



Impact at LinkedIn

Majority of ML applications at LinkedIn have adopted Feathr

Improved Productivity

Faster experimentation 
with new features, from 

weeks to days

Improved Performance

Running time improved 
over custom pipelines, as 

much as 50%

Improved Collaboration

Applications can share 
features, which was 
difficult previously



What is Feathr
An abstraction layer between raw 
data and model

• Define features based 
on raw data sources 
using simple APIs.

• Get those features by 
their names during 
model training and 
model inferencing.

• Share features across 
your team and 
organizations.



Highlights

Cloud-native

Native integration with 
Azure and AWS

Rich Transformation

Python built-in 
transformations and 

PySpark UDF, on-demand 
evaluation

Scalable & High 
Performance

Highly optimized feature 
compute engine



Use case: Create Feature Definition
Load raw source data, and define transformation



Use Case - Streaming Feature 
Create features from streaming source



Use case: Build training dataset
Point-in-time Join Correct Semantics 



Use Case - Feature Materialization
Materialize feature values to online storage for realtime access



Use Case - Feature Sharing and Discovery
Share features and discover features



Use Case - Derived Feature
Define features on top of other features



Feathr Highlights – Scalability

• Capable of processing tens of billions of rows and PB scale data

• Native optimizations like bloom filters, join plan optimizer, salted join

• Incremental joins for large dataset



Feathr Architecture





Demo and Q&A



More Resources

Source code – welcome to start & fork!
https://github.com/feathr-ai/feathr

Tutorials:
Introduction to Feathr - Beginner's guide
Notebook tutorial: Build a Product Recommendation Machine Learning 
Model with Feathr Feature Store

Slack invitation:
https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-
voq0Us7bbKAw873cEzHOSg

https://github.com/feathr-ai/feathr
https://www.youtube.com/watch?v=gZg01UKQMTY
https://www.youtube.com/watch?v=2KSM-NLfvY0
https://www.youtube.com/watch?v=2KSM-NLfvY0
https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg
https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg


Summary

• Feathr is an open-source 
feature store which can be 
seen as an abstraction layer 
between raw data and 
model.

• Feathr allows users to 
define features with 
transformation on top of 
raw data source and get 
feature values by feature 
name during both training 
and inferencing.

• Feathr simplifies feature 
preparation workflows and 
enables feature sharing 
across teams and company.



Thank you
(Check out our GitHub: https://github.com/feathr-ai/feathr)


	Slide 1
	Slide 2: Agenda
	Slide 3: Survey in Forbes: Big data engineering for AI
	Slide 4: Like a music streaming app …
	Slide 5: Why Feathr
	Slide 6: Why Feathr
	Slide 7: Like a package manager for feature engineering
	Slide 8: Problem: The complexity of feature preparation pipelines
	Slide 9: What a feature store should be
	Slide 10: Feature store principal use cases
	Slide 11: The “feature store” abstraction
	Slide 12: The “feature store” abstraction
	Slide 13: Feathr at LinkedIn
	Slide 14: Introducing Feathr, a battle tested feature store built by LinkedIn
	Slide 15: Feathr is a pillar of LinkedIn’s ML platform 
	Slide 16: Feathr at LinkedIn
	Slide 17: Impact at LinkedIn
	Slide 18: What is Feathr
	Slide 19: Highlights
	Slide 20: Use case: Create Feature Definition
	Slide 21: Use Case - Streaming Feature 
	Slide 22: Use case: Build training dataset
	Slide 23: Use Case - Feature Materialization
	Slide 24: Use Case - Feature Sharing and Discovery
	Slide 25: Use Case - Derived Feature
	Slide 26: Feathr Highlights – Scalability
	Slide 27: Feathr Architecture
	Slide 28
	Slide 29: Demo and Q&A
	Slide 30: More Resources
	Slide 31: Summary
	Slide 32: Thank you (Check out our GitHub: https://github.com/feathr-ai/feathr)

