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Survey In Forbes: Big data engineering for Al

Re: Building training sets + Cleaning and organizing data + Collecting datasets

887

Time spent on data Respondents said
preparation data preparation ‘least
enjoyable’ part of data
science


https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=4db1f9456f63

Like a music streaming app ...

Old
Way

New
Way

Music “Workflow”

Manually get music files from
various sources

Convert them to a format my
device can play

Load onto my device
(different for home/car)

Worry about storage, bitrate,
compatibility

+

Just ask virtual assistant to
play the song.

for feature engineering

ML Feature Workflow

Write jobs to get entity data
from various sources

Extract, aggregate, join, convert
into proper format

Load into model framework
(different for train/serving)

Worry about scale, perf, leakage,
train/serve skew

+

Just import the feature by
name into model code.

If feature doesn’t exist, define
and register 1t via simple APIs.



Why Feathr

Handle all the complex weight-lifting and “boring” work automatically
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Why Feathr
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Like a package manager for feature engineering

import module1 query = FeatureQuery(
import module2 feature_list=

import module3 ‘teature_T",
import module4 ‘eature_2",
"feature 3",
"feature 4"

],
key=1tem_id)




Problem: The complexity of feature preparation pipelines

1. Load & Transform 2. Train/Inference Skew 3. Re-use and share

e The cost of building and
maintaining feature pipelines

e Different programming APIs e Offline training and online

for different environments, inference usually require

e.g. online, offline, nearline,

etc.

e Boilerplate and repetitive

work
e Hard to test and debug

different data serving
pipelines.

Ensuring features are
generated consistently is
time intensive and error
prone.

Teams are deterred from
using real time data for
inferencing due to the
difficulty in serving the right
data.

was borne redundantly
across many teams.
Team-specific pipelines also
made it impractical to reuse
features across projects. e.q.
NoO common type system, no
common feature namespace



What a feature store
should be



Feature store principal use cases

Develop Features Deploy Features Manage Features

Based on raw data, For training and online Monitor feature health
using simple APlIs model inferencing and share across teams



The “feature store” abstraction

e "'Put a feature in” (Producer)

o Develop a feature based on raw data sets
m Sliding time windows
m Aggregations
m Transformations
m Lookups/joins

o Develop a feature based on other feature(s)




The “feature store” abstraction

e "'Put a feature in” (Producer)

o Develop a feature based on raw data sets
m Sliding time windows
m Aggregations
m Transformations
m Lookups/joins

o Develop a feature based on other feature(s)

¢ 'Get some features out” (Consumer)
o Join features to training labels

o Backfill historical values of features
(point-in-time correctness)

o Efficiently compute, store, and serve features for online inference




Feathr at LinkedIn



Introducing Feathr, a battle tested feature store built by
LinkedlIn

Principal Data Scientist
Microsoft - Bangalore, IN
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_earning Hiring Preferences: The Al Behind LinkedIn Jobs
Personalized Recommendations in Linkedln Learning
Helping members connect to opportunity through Al
Near real-time features for near real-time personalization



https://engineering.linkedin.com/blog/2019/02/learning-hiring-preferences--the-ai-behind-linkedin-jobs
https://engineering.linkedin.com/blog/2016/12/personalized-recommendations-in-linkedin-learning
https://engineering.linkedin.com/blog/2021/helping-members-connect-to-opportunity-through-ai
https://engineering.linkedin.com/blog/2022/near-real-time-features-for-near-real-time-personalization
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Feathr at LinkedIn

Timeline
- hundreds of models
‘h d< of feat 2017 Initial development and launch
) ousar.w > OT e L.“ies 2018 Broad adoption within LinkedIn
- many ledS of entities 2020  Majority of LinkedIn ML applications
(economic graph) onboarded
2022 Open source, Azure Integration, joined

- petabyte scale Linux Foundation Al & Data



Impact at LinkedIn
Majority of ML applications at LinkedIn have adopted Feathr

/= @

Improved Productivity Improved Performance Improved Collaboration
Faster experimentation Running time improved Applications can share
with new features, from over custom pipelines, as features, which was

weeks to days much as 50% difficult previously



What Is Feathr

An abstraction layer between raw
data and model

Define features based
on raw data sources
using simple APIs.

Get those features by
their names during
model training and
model inferencing.

Share features across
your team and
organizations.



Highlights

Cloud-native

Native integration with
Azure and AWS
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Rich Transformation

Python built-in

transformations and
PySpark UDF, on-demand
evaluation

Scalable & High
Performance
Highly optimized feature
compute engine



Use case: Create Feature Definition

Load raw source data, and define transformation

batch_source = HdfsSource(
name="nycTaxiBatchSource",
path="abfss://green_tripdata_2020-04.csv",
event_timestamp_column="1pep_dropoff_datetime",
timestamp_format="yyyy-MM-dd HH:mm:ss")

trip_id = TypedKey(key_column="trip_id",
key_column_type=ValueType.INT64,
description="trip id")

features = [

Feature(name="f_trip_distance",
feature_type=FLOAT,
key=trip_id),

Feature(name="f_is_long_trip_distance",
feature_type=BOOLEAN,
transform="cast_float(trip_distance)>30",
key=trip id) # SOL-like syntax to tr

anchor = FeatureAnchor(name="anchor_features",

source=batch_source,
features=features)




Use Case - Streaming Feature

Create features from streaming source

stream_source = KafKaSource(name="kafkaStreamingSource",
kafkaConfig=KafkaConfig(brokers=["feathrazureci.servicebus.windows.net:
topics=["feathrcieventhub"],
schema=schema)

driver_id = TypedKey(key_ column="driver_id",
key_column_type=ValueType.INT64,
description="driver id",
full_name="nyc driver id")

kafkaAnchor = FeatureAnchor(name="kafkaAnchor",

source=stream _source,

features=[Feature(name="f_modified_streaming_count",
feature_type=INT32,
transform="trips_today + 1",
key=driver_id),

Feature(name="f_modified_streaming_count2"

feature_type=INT32,
transform="trips_today + 2",
key=driver_id)]




Use case: Build training dataset

Point-in-time Join Correct Semantics

# Requested features to be joined

# Define the key for your feature

location_id = TypedKey(key_column="DOLocationID",
key column_type=ValueType.INT32,
description="1location id in NYC",
full_name="nyc_taxi.location_id")

feature_query = FeatureQuery(feature_list=["f_location_avg_fare"], key=[location_id])

# Observation dataset settings

settings = ObservationSettings(
observation_path="abfss://green_tripdata_2020-04.csv", # Path to your observation data
event_timestamp_column="Llpep_dropoff_datetime", # Event timepstamp field for your data,
timestamp_format="yyyy-MM-dd HH:mm:ss") # Event timestamp format, optional

# Prepare training data by joining features to the input (observation) data.

# feature-join.conf and features.conf are detected and used automatically.

feathr_client.get_offline_features(observation_settings=settings,
output_path="abfss://output.avro",
feature_query=feature_query)




Use Case - Feature Materialization

Materialize feature values to online storage for realtime access

client = FeathrClient()

redisSink = RedisSink(table_name="nycTaxiDemoFeature")

# Materialize two features 1into a redilis table.

settings = MaterializationSettings('"nycTaxiMaterializationJob",

sinks=[redisSink],
feature_names=["f_location_avg_fare", "f_location_max_fare"])
client.materialize_features(settings)




Use Case - Feature Sharing and Discovery

Share features and discover features

xiaoyzhu@microsoft.com

Lineage feathr_ci_registry_39_6_728496
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Use Case - Derived Feature

Define features on top of other features

# Compute a new feature(a.k.a. derived feature) on top of an existing feature
derived_feature = DerivedFeature(name="f_trip_time_distance",
feature_type=FLOAT,
key=trip_key,
input_features=[f_trip_distance, f_trip_time_duration],
transform="f_trip_distance % f_trip_time_duration")

# Another example to compute embedding similarity

user_embedding = Feature(name="user_embedding", feature_type=DENSE_VECTOR, key=user_key)
item_embedding = Feature(name="item_embedding", feature_type=DENSE_VECTOR, key=item_key)

user_item_similarity = DerivedFeature(name="user_item_similarity",
feature_type=FLOAT,
key=[user_key, item_key],
input_features=[user_embedding, item_embedding],
transform="cosine_similarity(user_embedding, item_embedding)'




Feathr Highlights — Scalability

» (Capable of processing tens of billions of rows and PB scale data
* Native optimizations like bloom filters, join plan optimizer, salted join
* |Incremental joins for large dataset



Feathr Architecture



Feathr Ul (HA built-in with webapp) Feathr REST APl (HA built-in with webapp)
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Demo and Q&A



More Resources

Source code — welcome to start & fork!
https://github.com/feathr-ai/feathr

Tutorials:

Introduction to Feathr - Beginner's guide

Notebook tutorial: Build a Product Recommendation Machine Learning
Model with Feathr Feature Store

Slack invitation:
https://|join.slack.com/t/feathrai/shared invite/zt-1ffva5ubv-
vogOUs7bbKAw873cEzHOSg



https://github.com/feathr-ai/feathr
https://www.youtube.com/watch?v=gZg01UKQMTY
https://www.youtube.com/watch?v=2KSM-NLfvY0
https://www.youtube.com/watch?v=2KSM-NLfvY0
https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg
https://join.slack.com/t/feathrai/shared_invite/zt-1ffva5u6v-voq0Us7bbKAw873cEzHOSg

* Feathr is an open-source
feature store which can be
seen as an abstraction layer
between raw data and
model.

* Feathr allows users to
define features with
Summa ry transformation on top of
raw data source and get
feature values by feature
name during both training
and inferencing.

* Feathr simplifies feature
preparation workflows and
enables feature sharing
across teams and company.



Thank you

(Check out our GitHub: https://github.com/feathr-ai/feathr)
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